viernes, 31 de mayo de 2013

4to. A y B BIOLOGÍA-13 Y 14/6- RESPIRACIÓN CELULAR


RESPIRACIÓN CELULAR                            4to A y B   BIOLOGÍA

ANTES DE LA CLASE :MIREN Y TOMEN APUNTES SOBRE ESTE VIDEO 
                                         LEAN Y RESUMAN ESTE MATERIAL.



Respiración celular

La respiración celular es el conjunto de reacciones bioquímicas por las cuales determinados compuestos orgánicos son degradados completamente, por oxidación, hasta su conversión en sustancias inorgánicas, proceso que rinde energía (en forma de ATP) aprovechable por la célula. Los substratos habitualmente usados en el proceso son la glucosa, otros hidratos de carbonoácidos grasos, inclusoaminoácidoscuerpos cetónicos u otros compuestos orgánicos. En los animales estos combustibles pueden provenir del alimento, de los que se extraen durante la digestión, o de las reservas corporales. En las plantas su origen pueden ser asimismo las reservas, pero también la glucosa obtenida durante la fotosíntesis.
La respiración celular, como componente del metabolismo, es un proceso catabólico, en el cual la energía contenida en los substratos usados como combustible es liberada de manera controlada. Durante la misma, buena parte de la energía libre desprendida en estas reacciones exotérmicas es incorporada a la molécula de ATP (o de nucleótidos trifosfato equivalentes), que puede ser a continuación utilizada en los procesos endotérmicos, como son los de mantenimiento y desarrollo celular [anabolismo]
Su ecuación general es la siguiente (respiración aeróbica):



  C_6H_{12}O_6 + 6 O_2 \to 6 H_2O+6 CO_2+38ATP

Tipos de respiración celular

Existen dos tipos de respiración, en función del aceptor final de electrones; ambas tienen en común la existencia de una cadena transportadora de electrones.
  • Respiración aeróbica. El aceptor final de electrones es el oxígeno molecular, que se reduce a agua. La realizan la inmensa mayoría de células, incluidas las humanas. Los organismos que llevan a cabo este tipo de respiración reciben el nombre de organismos aeróbicos.
  • Respiración anaeróbica. El aceptor final de electrones es una molécula inorgánica distinta del oxígeno, más raramente una molécula orgánica. Es un tipo de metabolismo poco común exclusivo de ciertosmicroorganismos. No debe confundirse con la fermentación, proceso también anaeróbico pero en el que no interviene nada parecido a una cadena transportadora de electrones.

Glucólisis

Reacción global de la glucólisis1
Alpha-D-Glucopyranose.svg \Longrightarrow  Pyruvat.svg + Pyruvat.svg
Glucosa + 2NAD+ + 2ADP + 2P_i \Longrightarrow 2Piruvato + 2NADH + 2ATP + 2H+ + 2H2O
La glucólisis o glicolisis (del griego glycos, azúcar y lysis, ruptura), es la vía metabólica encargada de oxidar la glucosa con la finalidad de obtener energía para la célula. Consiste en 10 reacciones enzimáticas consecutivas que convierten a la glucosa en dos moléculas de piruvato, el cual es capaz de seguir otras vías metabólicas y así continuar entregando energía al organismo.
El tipo de glucólisis más común y más conocida es la vía de Embden-Meyerhof, explicada inicialmente por Gustav Embden yOtto Meyerhof. El término puede incluir vías alternativas, como la vía de Entner-Doudoroff. No obstante, glucólisis se usa con frecuencia como sinónimo de la vía de Embden-Meyerhof. Es la vía inicial del catabolismo (degradación) de carbohidratos.
Durante la glucólisis se obtiene un rendimiento neto de dos moléculas de ATP y dos moléculas de NADH; el ATP puede ser usado como fuente de energía para realizar trabajo metabólico, mientras que el NADH puede tener diferentes destinos. Puede usarse como fuente de poder reductor en reacciones anabólicas; si hay oxígeno, puede oxidarse en la cadena respiratoria, obteniéndose tres ATPs; si no hay oxígeno, se usa para reducir el piruvato a lactato (fermentación láctica), o a CO2 y etanol(fermentación alcohólica), sin obtención adicional de energía.
La glucólisis es la forma más rápida de conseguir energía para una célula y, en el metabolismo de carbohidratos, generalmente es la primera vía a la cual se recurre. Se encuentra estructurada en 10 reacciones enzimáticas que permiten la transformación de una molécula de glucosa a dos moléculas de piruvato mediante un proceso catabólico.
La glucólisis es una de las vías más estudiadas, y generalmente se encuentra dividida en dos fases: la primera, de gasto de energía y la segunda fase, de obtención de energía.
La primera fase consiste en transformar una molécula de glucosa en dos moléculas de gliceraldehído (una molécula de baja energía) mediante el uso de 2 ATP. Esto permite duplicar los resultados de la segunda fase de obtención energética.
En la segunda fase, el gliceraldehído se transforma en un compuesto de alta energía, cuya hidrólisis genera una molécula de ATP, y como se generaron 2 moléculas de gliceraldehído, se obtienen en realidad dos moléculas de ATP. Esta obtención de energía se logra mediante el acoplamiento de una reacción fuertemente exergónica después de una levemente endergónica. Este acoplamiento ocurre una vez más en esta fase, generando dos moléculas de piruvato. De esta manera, en la segunda fase se obtienen 4 moléculas de ATP.
Luego de que una molécula de glucosa se transforme en 2 moléculas de piruvato, las condiciones del medio en que se encuentre determinarán la vía metabólica a seguir.
Funciones
Las funciones de la glucólisis son:
  • La generación de moléculas de alta energía (ATP y NADH) como fuente de energía celular en procesos de respiración aeróbica (presencia de oxígeno) y fermentación (ausencia de oxígeno).
  • La generación de piruvato que pasará al ciclo de Krebs, como parte de la respiración aeróbica.
  • La producción de intermediarios de 6 y 3 carbonos que pueden ser utilizados en otros procesos celulares.

Ciclo de Krebs





Esquema didáctico del ciclo del ácido cítrico.
El ciclo de Krebs (también llamado ciclo del ácido cítrico o ciclo de los ácidos tricarboxílicos) es una ruta metabólica, es decir, una sucesión de reacciones químicas, que forma parte de la respiración celular en todas las células aeróbicas. En células eucariotas se realiza en la mitocondria. En las procariotas, el ciclo de Krebs se realiza en el citoplasma, específicamente en el citosol.
En organismos aeróbicos, el ciclo de Krebs es parte de la vía catabólica que realiza la oxidación de glúcidosácidos grasos y aminoácidoshasta producir CO2, liberando energía en forma utilizable (poder reductor y GTP).
El metabolismo oxidativo de glúcidosgrasas y proteínas frecuentemente se divide en tres etapas, de las cuales, el ciclo de Krebs supone la segunda. En la primera etapa, los carbonos de estas macromoléculas dan lugar a moléculas de acetil-CoA de dos carbonos, e incluye las vías catabólicas de aminoácidos (p. ej. desaminación oxidativa), la beta oxidación de ácidos grasos y la glucólisis. La tercera etapa es la fosforilación oxidativa, en la cual el poder reductor (NADH y FADH2) generado se emplea para la síntesis de ATP según la teoría del acomplamiento quimiosmótico.
El ciclo de Krebs también proporciona precursores para muchas biomoléculas, como ciertos aminoácidos. Por ello se considera una víaanfibólica, es decir, catabólica y anabólica al mismo tiempo.
El Ciclo de Krebs fue descubierto el por el alemán Hans Adolf Krebs, quien obtuvo el Premio Nobel.
Ciclo de Krebs-es.svg

Visión simplificada y rendimiento del proceso

  • El paso final es la oxidación del ciclo de Krebs, produciendo un oxaloacetato y dos CO2.
  • El acetil-CoA reacciona con una molécula de oxaloacetato (4 carbonos) para formar citrato (6 carbonos), mediante una reacción de condensación.
  • A través de una serie de reacciones, el citrato se convierte de nuevo en oxaloacetato.
  • Durante estas reacciones, se substraen 2 átomos de carbono del citrato (6C) para dar oxalacetato (4C); dichos átomos de carbono se liberan en forma de CO2
  • El ciclo consume netamente 1 acetil-CoA y produce 2 CO2. También consume 3 NAD+ y 1 FAD, produciendo 3 NADH + 3 H+ y 1 FADH2.
  • El rendimiento de un ciclo es (por cada molécula de piruvato): 1 ATP, 3 NADH +3H+, 1 FADH2, 2CO2.
  • Cada NADH, cuando se oxide en la cadena respiratoria, originará 2,5 moléculas de ATP (3 x 2,5 = 7,5), mientras que el FADH2 dará lugar a 1,5 ATP. Por tanto, 7,5 + 1,5 + 1 GTP = 10 ATP por cada acetil-CoA que ingresa en el ciclo de Krebs.
  • Cada molécula de glucosa produce (vía glucólisis) dos moléculas de piruvato, que a su vez producen dos acetil-CoA, por lo que por cada molécula de glucosa en el ciclo de Krebs se produce: 4CO2, 2GTP, 6 NADH + 6H + , 2 FADH2; total 32 ATP.

Cadena respiratoria y fosforilación oxidativa    LUEGO DE LA GLUCÓLISIS Y DEL CICLO DE KREBS SE PRODUCE ESTA ETAPA PARA FINALIZAR EL PROCESO DE RESPIRACIÓN AERÓBICA

En las mitocondrias, el sistema que aporta la energía para la síntesis de ATP por la ATPsintetasa utiliza el flujo de protones H+ para su activación, lo que se conoce como cadena respiratoria o cadena de transporte de electrones.
La cadena está formada por una serie de enzimas diseñadas por la evolución para aceptar y ceder electrones, o sea, que su función es la de reducirse (aceptar electrones) y oxidarse (perder electrones). El aceptor final de los electrones que viajan por la cadena respiratoria es el oxígeno. De hecho, la mayor parte del oxígeno que nosotros respiramos se usa para aceptar los electrones que pasan por la cadena respiratoria; después de que un átomo de oxígeno recibe dos electrones, éste reacciona con dos H+ y forma una molécula de agua.


EN SÌNTESIS...
La respiración aerobia es un conjunto de reacciones en las cuales el ácido pirúvico producido por glucólisis se desdobla a bióxido de carbono y agua, y se producen grandes cantidades de ATP. Utiliza la glucosa como combustible y el oxígeno como aceptor final de electrones. Se distinguen cuatro etapas en la respiración aerobia:
1. Glucólisis.
2. Formación de acetil coenzima A.
3. Ciclo de Krebs o ciclo del ácido cítrico.
4. Cadena respiratoria.

LA "OTRA" RESPIRACIÓN  ... Respiración anaerobia o fermentación

Muchos organismos (especialmente microorganismos) sobreviven en los intestinos de los animales, en el suelo profundo, en sedimentos u otros sitios donde el oxígeno está casi, o totalmente, ausente. Aun en algunas de nuestras células corporales resisten breves periodos a la ausencia de oxígeno.
Probablemente en condiciones anaerobias evolucionaron la vida y la glucólisis, produciéndose por cada molécula de glucosa dos moléculas de ácido pirúvico, el cual puede seguir diferentes caminos: la fermentación alcohólica, la láctica, la acética y la respiración aerobia.

Fermentación láctica
Se realiza en los músculos de nuestro organismo, sobre todo cuando se hace ejercicio de manera exagerada, ya que aunque la respiración celular aerobia proporciona más ATP que la glucólisis, se encuentra limitada por la capacidad del organismo para brindar oxígeno a sus células musculares, y cuando sus músculos están desprovistos de oxígeno no dejan de trabajar de manera inmediata. En lugar de eso, la glucólisis continúa durante un tiempo proporcionando sus escasas dos moléculas de ATP por cada molécula de glucosa y generando ácido pirúvico y NADH, entonces, el ácido pirúvico (C3H4O3) se vuelve aceptor del hidrógeno y se forma el ácido láctico (C3H6O3). Sin embargo, el ácido láctico es tóxico en concentraciones elevadas, por lo que pronto causa malestar intenso y fatiga, haciendo que el individuo disminuya su ritmo o se detenga y mientras descansa respira rápidamente para restituir el suministro de oxígeno, haciendo que el ácido láctico se vuelva a convertir en ácido pirúvico, lo que no ocurre en las células musculares sino en el hígado.Fermentación alcohólica
Se lleva a cabo en muchos microorganismos como las levaduras del género Saccharomyces. Después de que se obtienen las dos moléculas de ácido pirúvico (C3H4O3), éstas se degradan hasta formar dos moléculas de CO2, dos moléculas de alcohol etílico (C2H6O) y más dos moléculas de ATP.
La fermentación alcohólica se utiliza en la industria en la fabricación de diferentes tipos de bebidas alcohólicas y en la elaboración de pan, donde el alcohol se evapora y el CO2 provoca que el pan esponje. Algunos otros microorganismos realizan otros tipos de fermentación, se produce ácido acético o alcohol. Otros más respiran anaerobiamente desechando metano u otros productos. La respiración anaerobia se considera ineficiente porque produce poca energía, se obtienen dos moléculas de ATP por cada molécula de glucosa.

4to.Ay B BIOLOGÍA 6 Y 7 /6 CUESTIONARIO "PUENTE"

PARA UNIR CONCEPTOS VISTOS EN CITOLOGÍA Y BASES QUÍMICAS RESOLVEREMOS ESTE CUESTIONARIO QUE SERVIRÁ DE "PUENTE" PARA LLEGAR A METABOLISMO CELULAR..

GUÍA DE ESTUDIO 4to. A y B - TRAER A LA CLASE MATERIAL BIBLIOGRÁFICO ADECUADO PARA PODER RESOLVERLA...

RESUELVE LA SIGUIENTE GUÍA  EN FORMA DETALLADA:
1- COMPOSICIÓN, UBICACIÓN Y FUNCIÓN DEL CITOSOL.
2- ¿QUÉ ES EL CITOESQUELETO ?¿CUÁLES SON SUS FUNCIONES?¿QUÉ COMPONENTES DEL CITOESQUELETO COLABORA EN LA FORMACIÓN DE LAS ESTRUCTURAS DE LOS CENTRÍOLOS, LOS CILIOS Y LOS FLAGELOS?
3-  COMPOSICIÓN, UBICACIÓN Y FUNCIÓN DEL CENTROSOMA.
4- ¿CUÁL ES LA DIFERENCIA FUNCIONAL ENTRE CILIOS Y FLAGELOS ?
5-  COMPOSICIÓN, ESTRUCTURA, UBICACIÓN Y FUNCIÓN DE LOS RIBOSOMAS.
6- ESTRUCTURA, UBICACIÓN Y FUNCIÓN DEL RETÍCULO ENDOPLASMÁTICO LISO Y RUGOSO.
7- ESTRUCTURA, UBICACIÓN Y FUNCIÓN DEL COMPLEJO (APARATO) DE GOLGI.EXPLICA EL PROCESAMIENTO Y ENVOLTURA DE LAS PROTEÍNAS EN ESTE COMPLEJO.
8- ESTRUCTURA, UBICACIÓN Y FUNCIÓN DE LOS LISOSOMAS.
9- ESTRUCTURA, UBICACIÓN Y FUNCIÓN DE LOS PEROXISOMAS.
10- ESTRUCTURA, UBICACIÓN Y FUNCIÓN DE LOS PROTEASOMAS.
11- MITOCONDRIAS. INDICA ESTRUCTURA, UBICACIÓN Y FUNCIÓN .¿QUÉ PROCESOS TIENEN LUGAR EN LAS CRESTAS Y EN LA MATRIZ MITOCONDRIAL?¿POR QUÉ TODOS TENEMOS ADN MITOCONDRIAL EXCLUSIVAMENTE HEREDADO DE NUESTRA MADRE?
12- ESTRUCTURA, UBICACIÓN Y FUNCIÓN DEL NÚCLEO.¿CÓMO HACEN LAS PARTÍCULAS GRANDES PARA ENTRAR Y SALIR DEL NÚCLEO?¿DÓNDE SE PRODUCE EL ARN?¿CÓMO SE DISPONE EL ADN EN EL NÚCLEO?
13- DESCRIBE LA SECUENCIA DE PROCESOS QUE TIENEN LUGAR EN LA SÍNTESIS DE PROTEÍNAS.LUEGO DIFERENCIA TRANSCRIPCIÓN DE TRADUCCIÓN.
14- DIVISIÓN CELULAR. ¿ CUÁLES SON LOS HECHOS MÁS IMPORTANTES DE CADA FASE DE LA MITOSIS?  ¿CUÁLES SON LOS HECHOS MÁS IMPORTANTES DE CADA FASE DE LA MEIOSIS?  
15- ¿CÓMO SE DIFERENCIAN LAS CÉLULAS?
16- ¿CÓMO ENVEJECEN LAS CÉLULAS?

3ro. A y B TRABAJO SOBRE SISTEMA NERVIOSO 10 Y 11/6


ÒRGANOS DEL SISTEMA NERVIOSO

LES DEJO ESTE LINK DONDE ENCONTRARÀN INFORMACIÒN BÀSICA SOBRE ALGUNOS ÒRGANOS DEL SISTEMA NERVIOSO .

Recuerden traer material bibliográfico acorde e imprimir este material para trabajar en clase !!!

Responde las siguientes preguntas de selección múltiple con única respuesta:

1.Desde el punto de vista estructural y funcional los nervios son el:
a) Estado de susto o alteración
b) Conjunto de axones de muchas neuronas que forman haces
c) Impulso nervioso

2.Las meninges son envolturas membranosas que protegen en forma concéntrica al SNC. Su ubicación de adentro (más interna) hacia fuera (más externa) es:
a) Duramadre, Piamadre y Aracnoides
b) Aracnoides, Duramadre y Piamadre
c) Piamadre, Aracnoides y Duramadre

3.El líquido cefalorraquídeo sirve de amortiguador y evita que los centros nerviosos se golpeen contra los huesos a cada movimiento. Se encuentra ubicado entre:
a) Duramadre y Aracnoides
b) Aracnoides y Piamadre
c)Duramadre y Piamadre

4.El conjunto de órganos nerviosos protegidos por el cráneo constituyen el:
a)Sistema Nervioso Central
b) El encéfalo
c) El cerebro

5.No forma parte del encéfalo
a) Cerebelo
b)Médula espinal
c) Protuberancia anular

6.Cuando se afirma que el control del cuerpo por parte de los hemisferios es cruzado, significa que:
a) Cada hemisferio domina las dos mitades del cuerpo
b)El hemisferio derecho domina la mitad izquierda del cuerpo, y el izquierdo, la derecha
c) El hemisferio derecho domina la mitad derecha del cuerpo, y el izquierdo, la izquierda

7.El surco longitudinal (cisura de Rolando) y el surco lateral, (cisura de Silvio), separan a los hemisferios en cuatro cuadrantes: los lóbulos frontal, parietal, temporal y occipital. La detección e interpretación de imágenes visuales esta localizada en el lóbulo:
a) frontal
b) parietal
c) occipital

8.Facultades como la capacidad creativa, artística y la orientación espacial, son controladas por el:
a)Hemisferio cerebral derecho
b)Hemisferio cerebral izquierdo
c) Hemisferio cerebeloso derecho

9.Emociones como el amor, el odio, el miedo, la ira, la alegría y la tristeza están controladas por el:
a)Cerebro
b)Cerebelo
c) Bulbo raquídeo

10.Controlar movimientos musculares amplios (motricidad gruesa) como caminar, y otros mas específicos (motricidad fina) como poner la llave en la cerradura o enhebrar una aguja, es función de:
a) El bulbo raquídeo
b) La medula espinal
c) El cerebelo

11.Controlar los centros respiratorios, el centro regulador de los movimientos peristálticos del tubo digestivo y, el centro vasoconstrictor, que regula el diámetro de los vasos sanguíneos y la frecuencia cardiaca, es función del:
a) Bulbo raquídeo o Medula Oblongada
b)Puente de Varolio o Protuberancia anular
c) Tálamo

12.Teniendo en cuenta las funciones del Bulbo raquídeo, podemos afirmar que su daño, destrucción o alteración causaría:
a) Parálisis
b)Muerte instantánea
c) Perdida de la memoria

13.La estructura alargada que une los hemisferios cerebelosos es el:
a) Cuerpo calloso
b)Vermis
c)Puente de Varolio

14.Si a un ratón de laboratorio se le extirpa el cerebelo, esto le causaría:
a) Dificultad para moverse y mantener la postura
b)Muerte instantánea
c) Pérdida de la memoria

15.Contiene núcleos responsables de las actividades asociadas con el sexo. hambre, sed, placer, dolor y temor
a) Médula espinal
b) Tálamo
c)Hipotálamo

16.La estructura que une los hemisferios cerebrales es el:
a) Cuerpo calloso
b) Vermis
c)Puente de Varolio

17.El Sistema nervioso somático está constituido por:
a) Encéfalo y médula espinal
b)Nervios craneales y nervios espinales
c)Sistema simpático y parasimpático

18.Si una persona sufre una parálisis facial podemos suponer que los nervios craneales afectados corresponden al par:
a) III
b) VII
c) XII

19.Par de nervios craneales que influye en la respiración, circulación y digestión:
a) Neumogástrico
b) Espinal
c)Hipogloso

20.Los 31 pares de nervios espinales se clasifican de arriba hacia abajo en:
a)8 cervicales, 12 dorsales, 5 lumbares, 5 sacros y 1 coccígeo
b)5 lumbares, 12 dorsales, 8 cervicales, 1 coccígeo y 5 sacros
c) 8 cervicales, 5 dorsales, 12 lumbares, 1 sacros y 5 coccígeos

21.Centro elaborador de la actividad refleja. Interviene en los actos involuntarios o inconscientes como por ejemplo, el salto repentino que provoca un susto inesperado o el golpe en la rodilla que hace extender la pierna:
a)Cerebro
b)Médula espinal
c)SN Simpático





REALIZA DIBUJOS DONDE SE RESALTE LA UBICACIÒN DE CADA UNO DE LOS ÒRGANOS DEL SISTEMA NERVIOSO CENTRAL.

3ro. A y B MATERIAL INTRODUCTORIO 3 Y 4 /6 - SISTEMA NERVIOSO


LEE ATENTAMENTE ESTE TEXTO. LUEGO BUSCA LAS IDEAS PRINCIPALES, POR ÚLTIMO REALIZA UNA RED CONCEPTUAL CON ESAS IDEAS O CONCEPTOS 

SISTEMA NERVIOSO



Es el conjunto de los elementos que en los organismos animales están .relacionados con la recepción de los estímulos, la transmisión de los impulsos nerviosos o la activación de los mecanismos de los músculos.
  
   Con fines descriptivos, el sistema nervioso se divide en dos partes principales:
   a) Sistema nervioso central, que consta del encefálo y médula espinal
   b) Sistema nervioso periférico, 

  • Sistema nervioso central, que consta de:
  • Encéfalo
  • Cerebro
  • Bulbo
  • Protuberancia
  • Pedúnculos cerebrales
  • Cerebelo

  • Sistema nervioso periférico ó vegetativo que consta de los nervios craneales y raquídeos y sus ganglios  y se divide en: Simpático y Parasimpático.

       Se denomina encéfalo, a la porción del sistema nervioso encerrado en la cavidad craneal y continua con la médula espinal a tráves del agujero occiptal. Lo envuelen tres meninges, la duramadre, la aracnoides y la piamadre que tienen continuidad con las corespondientes meninges de la médula espinal.
      El encéfalo se divide en tres partes principales: el romboencéfalo o cerebro posterior, el meseencéfalo o cerebro medio y el prosencéfalo o cerebro anterior.
      El Cerebro es la parte más grande del encéfalo, consta de dos hemisferios cerebrales, que están unidos por una masa de sustancia blanca denominada cuerpo calloso.
      La Capa superficial de cada hemisferio, la corteza, está compuesta por sustancia gris. Se presenta en forma de pliegues o circonvoluciones, separadas por surcos o cisuras.
      Los hemisferios se dividen en lobulos que recibem el nombre de los huesos del cráneo debajo de los cuales se encuentran (frontal, parietal, occiptal).
      La parte central esta constituidapor sustancia blanca, que contiene varios nucleos de sustancia gris (ganglios basales).
      El Bulbo raquídeo es de forma cónica y une la protuberancia situada por encima, con la médula espinal, situada por debajo.
      La Protuberancia está situada en la cara anterior del cerebro, por debajo del mesencefalo y por encima del bulboraquideo.

      El Cerebelo se halla en la fosa cerebral posterior, detrás de la protuberancia y del bulbo. Consta de dos hemisferios unidos por una porcion média, el vermis. El cerebelo esta unido con el mesencefalo por los pedúnculos cerebelosos superiores, a la protuberancia por los pedúnculos cerebelosos medios y al bulbo por los pedúnculos cerebelosos inferiores.

      El neuroeje está formado por un tejido constituido esencialmente por células altamente diferenciadas, denominadas neuronas.



Neurona es la denominación que recibe la célula nerviosa con todas sus prolongaciónes.
Cada célula nerviosa consta de una porción central o cuerpo celular, que contiene el núcleo y una o más estructuras denominadas axones y dendritas. Estas últimas son unas extensiones bastante cortas del cuerpo neuronal y están implicadas en la recepción de los estímulos. Por contraste, el axón suele ser una prolongación única y alargada, muy importante en la transmisión de los impulsos desde la región del cuerpo neuronal hasta otras células.

La neurona está morfológica-mente adaptada a las funciones de excitabilidad, conductibilidad y trofismo. Para que ello sea posible, el cuerpo celular ejerce la función trófica y manda hacia la periferia una serie de prolongaciones encargadas únicamente de la conducción.

Por la complejidad del sistema nervioso central, la multiplicidad y longitud de las vías que por él discurren, hacen necesaria la articulación cabo a cabo y en series de las diferentes neuronas.



La sustancia gris se caracteriza precisamente, por ser el lugar en el que se reúnen los cuerpos celulares y, también, el sitio donde las neuronas se articulan entre sí. La sustancia blanca, formada por el acoplamiento de las innumerables prolongaciones celulares, es sobre todo, desde el punto de vista funcional, un aparato de transmisión, entre los diferentes centros grises o entre éstos y el sistema nervioso periférico.
El influjo nervioso de una a otra neurona, o de ella al órgano inervado por ella, depende de la sinapsis y los mediadores químicos.
  • La sinapsis ó articulación neuronal, es la zona de enlace y transmisión, donde se fijan electivamente los mediadores químicos, permitiendo la descarga del influjo nervioso, condicionando la actividad autónoma de la célula nerviosa.
  • Los mediadores químicos son sustancias que actúan como factores en transmisión del influjo nervioso; estos mediadores son laAdrenalina y la Acetilcolina.
La constitución de los diferentes tejidos del organismo es, en general, homogénea, mientras que la del tejido nervioso es particularmente heterogénea; cada parte del neuroeje posee no solo su arquitectura propia, sino también su estructura fina particular.


Esta noción es particularmente importante y nos permite comprender por qué cada una de los dieciséis mil millones de neuronas que forman el neuroeje tiene su función especial. La destrucción de una de estas células entraña la perdida definitiva de la función que le estaba encomendada. Es posible que la lesión neuronal se compense, se supla; pero jamás seria completa la sustitución. No existe en el tejido nervioso regeneración real capaz de reemplazar la neurona desaparecida, testimonio de ello es la falta de órganos de división en el cuerpo celular.


La respuesta específica de la neurona se llama impulso nervioso; ésta y su capacidad para ser estimulada, hacen de esta célula una unidad de recepción y emisión capaz de transferir información de una parte a otra del organismo.
Sistemas simples
En los animales simples, como los celentéreos, las células nerviosas forman una red capaz de mediar respuestas estereotipadas. En los animales más complejos, como crustáceos, insectos y arañas, el sistema nervioso es más complicado.
Los cuerpos celulares de las neuronas están organizados en grupos llamados ganglios, que se interconectan entre sí formando las cadenas ganglionares. Estas cadenas están presentes en todos los vertebrados, en los que representan una parte especial del sistema nervioso relacionada en especial con la regulación de la actividad del corazón, las glándulas y los músculos involuntarios.
Sistemas de los vertebrados

En los vertebrados el encéfalo está contenido en la bóveda craneana y se encuentra dividido en dos grupos de elementos unidos entre sí por una porción más estrecha: los pedúnculos cerebrales. El grupo inferior se sitúa en la fosa cerebelosa y está conformado por el Bulbo,la Protuberancia, los Pedúnculos cerebrales y el Cerebelo. El grupo superior, se sitúa en fosa superior (fronto-témporo-parieto-occipital), y se denomina cerebro propiamente dicho.



El sistema nervioso alojado en la bóveda craneana, se continua a través de un agujero denominado foramen ovale, con la médula espinal contenida en el interior de la columna vertebral, discurriendo en su interior y emergiendo de él prolongaciones nerviosas ó nervios.
La distinción entre sistema nervioso central y periférico se basa en la diferente localización de las dos partes, íntimamente relacionadas, que constituyen el primero. Algunas de las vías de los cuerpos neuronales conducen señales sensitivas y otras vías conducen respuestas musculares o reflejos, como los causados por el dolor.
En la piel se encuentran unas células especializadas, llamadas receptores, de diversos tipos, sensibles a diferentes estímulos; captan la información (como por ejemplo, la temperatura, la presencia de un compuesto químico, la presión sobre una zona del cuerpo), y la transforman en una señal eléctrica que utiliza el sistema nervioso. Las terminaciones nerviosas libres también pueden recibir estímulos: son sensibles al dolor y son directamente activadas por éste. Estas neuronas sensitivas, cuando son activadas mandan los impulsos hacia el sistema nervioso central y transmiten la información a otras neuronas, llamadas neuronas motoras, cuyos axones se extienden de nuevo hacia la periferia. Por medio de estas últimas células, los impulsos se dirigen a las terminaciones motoras de los músculos, los excitan y originan su contracción y el movimiento adecuado. Así, el impulso nervioso sigue una trayectoria que empieza y acaba en la parte periférica del cuerpo. Muchas de las acciones del sistema nervioso se pueden explicar basándonos en estas cadenas de células nerviosas interconectadas que, al ser estimuladas en un extremo, son capaces de ocasionar un movimiento o secreción glandular en el otro.
La red nerviosa
Los nervios craneales se extienden desde la cabeza y el cuello hasta el cerebro pasando a través de las aberturas del cráneo; los nervios espinales o medulares están asociados con la médula espinal y atraviesan las aberturas de la columna vertebral.
Ambos tipos de nervios se componen de un gran número de axones que transportan los impulsos hacia el sistema nervioso central y llevan los mensajes hacia el exterior. Las primeras vías se llaman aferentes y las últimas eferentes. En función de la parte del cuerpo que alcanzan, a los impulsos nerviosos aferentes se les denomina sensitivos y a los eferentes somáticos o motores viscerales. La mayoría de los nervios son mixtos, es decir, están constituidos por elementos motores y sensitivos.
Los nervios craneales y espinales aparecen por parejas y, en la especie humana, su número es 12 y 31 respectivamente. Los pares de nervios craneales se distribuyen por las regiones de la cabeza y el cuello, con una notable excepción: el par X o nervio vago, que además de inervar órganos situados en el cuello, alcanza otros del tórax y el abdomen. La visión, la audición, el sentido del equilibrio y el gusto están mediados por los pares de nervios craneales II, VIII y VII respectivamente. De los nervios craneales también dependen las funciones motoras de la cabeza, los ojos, la cara, la lengua, la laringe y los músculos que funcionan en la masticación y la deglución. Los nervios espinales salen desde las vértebras y se distribuyen por las regiones del tronco y las extremidades. Están interconectados, formando dos plexos: el braquial, que se dirige a las extremidades superiores, y el lumbar que alcanza las inferiores.
Sistema nervioso vegetativo o Sistema nervioso autónomo
Existen grupos de fibras motoras que llevan los impulsos nerviosos a los órganos que se encuentran en las cavidades del cuerpo, como el estómago y los intestinos (vísceras). Estas fibras constituyen el sistema nervioso vegetativo que se divide en dos secciones con una función más o menos antagónica y con unos puntos de origen diferentes en el sistema nervioso central. Las fibras del sistema nervioso vegetativo simpático se originan en la región media de la médula espinal, unen la cadena ganglionar simpática y penetran en los nervios espinales, desde donde se distribuyen de forma amplia por todo el cuerpo.
Las fibras del sistema nervioso vegetativo parasimpático se originan por encima y por debajo de las simpáticas, es decir, en el cerebro y en la parte inferior de la médula espinal. Estas dos secciones controlan las funciones de los sistemas respiratorio, circulatorio, digestivo y urogenital.
Constituye una de las principales divisiones del sistema nervioso. Envía impulsos al corazón, músculos estriados, musculatura lisa y glándulas. El sistema vegetativo controla la acción de las glándulas; las funciones de los sistemas respiratorio, circulatorio, digestivo, y urogenital y los músculos involuntarios de dichos sistemas y de la piel. Controlado por los centros nerviosos en la parte inferior del cerebro tiene también un efecto recíproco sobre las secreciones internas; está controlado en cierto grado por las hormonas y a su vez ejerce cierto control en la producción hormonal.


El sistema nervioso vegetativo se compone de dos divisiones antagónicas:

  • El simpático (o toracolumbar) estimula el corazón, dilata los bronquios, contrae las arterias, e inhibe el aparato digestivo, preparando el organismo para la actividad física.
  • El parasimpático (o craneosacro) tiene los efectos opuestos y prepara el organismo para la alimentación, la digestión y el reposo.
El simpático consiste en una cadena de ganglios (grupo de neuronas) interconectados a cada lado de la columna vertebral, que envía fibras nerviosas a varios ganglios más grandes, como el ganglio celíaco. Estos, a su vez, dan origen a nervios que se dirigen a los órganos internos.
Los ganglios de las cadenas simpáticas conectan con el sistema nervioso central a través de finas ramificaciones que unen cada ganglio con la médula espinal. Las fibras del parasimpático salen del cerebro y, junto con los pares craneales, en especial los nervios espinal y vago, pasan a los ganglios y plexos (red de nervios) situados dentro de varios órganos. La parte inferior del cuerpo está inervada por fibras que surgen del segmento inferior (sacro) de la médula espinal y pasan al ganglio pélvico, del cual parten los nervios hacia el recto, la vejiga y los órganos genitales.

INVESTIGA DETALLADAMENTE COMO SE PRODUCEN LAS SINAPSIS ENTRE LAS NEURONAS.

CON TUS PALABRAS ¿CÓMO EXPLICARÍAS ESTE FENÓMENO DE COMUNICACIÓN CELULAR ENTRE NEURONAS????

.